WATTSTOPPER – DISTRIBUTED DIGITAL LIGHTING CONTROL SYSTEM

Wattstopper

SECTION 26 09 43

DISTRIBUTED DIGITAL LIGHTING CONTROL SYSTEM

Display hidden notes to specifier. (Don’t know how? Click Here)

Copyright 2016 – 2017 ARCAT, Inc. – All rights reserved

** NOTE TO SPECIFIER ** Wattstopper ; Digital Lighting Management products.

This section is based on the products of Wattstopper, which is located at:
2700 Zanker Rd. Suite 168
San Jose, CA 95134
Toll Free Tel: 800-879-8585
Tel: 408-988-5331
Fax: 408-988-5373
Email: request_info (sales_info@wattstopper.com)
Web: www.wattstopper.com
[Click Here] for additional information.
Wattstopper, a product line of Legrand, offers the most comprehensive line of simple, scalable and flexible energy efficient lighting controls and solutions for commercial and residential applications. The Wattstopper range of products, programs, and services have been helping customers save
energy, meet green initiatives and comply with energy codes for more than 30 years. A leading provider of products and systems for electrical installations and information networks wherever people live and work, Legrand delivers an unequaled depth and breadth of innovative solutions. Legrand North America and Legrand Canada companies include: Cablofil, Electrorack, Middle Atlantic, On Q, Ortronics, Pass & Seymour, Vantage and Wiremold.

1 GENERAL

SECTION INCLUDES
1. Distributed Digital Lighting Control System:
 System includes
 1. Digital Lighting and Plug Load Controls
 2. Relay Panels
 3. Emergency Lighting Control.

RELATED SECTIONS

NOTE TO SPECIFIER Delete any sections below not relevant to this project; add others as required.

1. Section 27 05 39 – Surface Raceways for Communications Systems
2. Section 26 50 00 – Lighting.
3. Section 26 52 00 – Emergency Lighting.
4. Section 25 55 00 – Integrated Automation Control of HVAC- Integrated Automation, Building integrator shall provide integration of the lighting control system with Building Automation Systems.

REFERENCES

NOTE TO SPECIFIER Delete references from the list below that are not actually required by the text of the edited section.

1. NFPA 70 – National Electrical Code; National Fire
Protection Association.
2. NEMA – National Electrical Manufacturers Association
3. FCC emission standards
4. UL – Underwriters Laboratories, Inc. Listings
6. UL 20 – General Use Switches, Plug Load Controls
7. UL 924 – Standard for Emergency Lighting and Power Equipment
8. ULC – Underwriter Laboratories of Canada Listings

▪ DESIGN / PERFORMANCE REQUIREMENTS

1. Digital Lighting Management System shall accommodate the square-footage coverage requirements for each area controlled, utilizing room controllers, digital occupancy sensors, switches, daylighting sensors and accessories that suit the required lighting and electrical system parameters.

2. System shall conform to requirements of NFPA 70.

3. System shall comply with FCC emission standards specified in part 15, sub-part J for commercial and residential application.

4. System shall be listed under UL sections 916 and/or 508.

▪ SUBMITTALS

1. Submit under provisions of Section 01 30 00 – Administrative Requirements.

2. Product Data: Manufacturer’s data sheets on each product to be used, including:

 1. Catalog sheets and specifications.
 2. Ratings, configurations, standard wiring diagrams, dimensions, colors, service condition requirements, and installed features.
 3. Storage and handling requirements and
recommendations.

4. Installation instructions.

3. Shop Drawings: Wiring diagrams a for the various components of the System specified including:
 1. Composite wiring and/or schematic diagram of each control circuit as proposed to be installed.
 2. Show location of all devices, including at minimum sensors, load controllers, and switches/dimmers for each area on reflected ceiling plans.
 3. Provide room/area details including products and sequence of operation for each room or area. Illustrate typical acceptable room/area connection topologies.
 4. Network riser diagram including floor and building level details. Include network cable specification. Illustrate points of connection to integrated systems. Coordinate integration with mechanical and/or other trades.

4. Manufacturer’s Certificates: Certify products meet or exceed specified requirements.

5. Closeout Submittals:
 1. Project Record Documents: Record actual installed locations and settings for lighting control devices.
 2. Operation and Maintenance Manual:
 1. Include approved Shop Drawings and Product Data.
 2. Include Sequence of Operation, identifying operation for each room or space.
 3. Include manufacturer’s maintenance information.
 4. Operation and Maintenance Data: Include detailed information on device
programming and setup.
5. Include startup and test reports.
3. **Title 24 Acceptance Testing Documentation:**
 Submit Certification of Acceptance and associated documentation for lighting control acceptance testing performed in accordance with CAL TITLE 24 P6, as specified in Part 3 of this specification under “COMMISSIONING”.

- **QUALITY ASSURANCE**
 1. Manufacturer Qualifications: Company specializing in manufacturing of centralized and distributed lighting control systems with a minimum of 10 years documented experience.
 2. Installer Qualifications: Company certified by the manufacturer and specializing in installation of networked lighting control products with minimum three years documented experience.
 3. System Components: Demonstrate that individual components have undergone quality control and testing prior to shipping.

- **PRE-INSTALLATION MEETINGS**
 1. Convene minimum two weeks prior to commencing Work of this section. Meeting to be attended by Contractor, Architect, system installer, factory authorized manufacturer’s representative, and representative of all trades related to the system installation.
 2. Review installation procedures and coordination required with related Work and the following:
 1. Confirm the location and mounting of all devices, with special attention to placement of switches, dimmers, and any sensors.
 2. Review the specifications for low voltage control wiring and termination.
 3. Discuss the functionality and configuration
of all products, including sequences of operation, per design requirements.

4. Discuss requirements for integration with other trades
3. Inspect and make notes of job conditions prior to installation:
 1. Record minutes of the conference and provide copies to all parties present.
 2. Identify all outstanding issues in writing designating the responsible party for follow-up action and the timetable for completion.
3. Installation shall not begin until all outstanding issues are resolved to the satisfaction of the Architect.

- DELIVERY, STORAGE, AND HANDLING
 1. Store products in a clean, dry space in original manufacturer’s packaging in accordance with manufacturer’s written instructions until ready for installation

- PROJECT CONDITIONS
 1. Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer for optimum results. Do not install products under environmental conditions outside manufacturer’s absolute limits.
2. Do not install equipment until following conditions can be maintained in spaces to receive equipment:
 1. Ambient temperature: 32 to 104 degrees F (0 to 40 degrees C).
 2. Relative humidity: Maximum 90 percent, non-condensing.

- WARRANTY
 1. Manufacturer shall provide a 5 year limited
warranty on products within this installation, except where otherwise noted, and consisting of a one for one device replacement.

- EXTRA MATERIALS
 1. See Section 01 60 00 – Product Requirements.
 2. Deliver extra sets of items for Owner’s use in maintenance as follows:

** NOTE TO SPECIFIER ** Insert project specific list below as required.

- 2 PRODUCTS
 - MANUFACTURERS
 1. Acceptable Manufacturer: Wattstopper, which is located at: 2700 Zanker Rd. Suite 168; San Jose, CA 95134; Toll Free Tel: 800-879-8585; Tel: 408-988-5331; Fax: 408-988-5373; Email: request info (sales_info@wattstopper.com); Web: wattstopper.com

** NOTE TO SPECIFIER ** Delete one of the following two paragraphs; coordinate with requirements of Division 1 section on product options and substitutions.

2. Requests for substitutions will be considered in accordance with provisions of Section 01 60 00 – Product Requirements.

- DISTRIBUTED DIGITAL LIGHTING CONTROL SYSTEM
 1. System General: Provide a WattStopper, Provide Digital Lighting Management System (DLM) complete with all necessary enclosures, wiring, and system components to ensure a complete and properly functioning system as indicated on the Drawings and specified herein. If a conflict is identified, between the Drawing and this Specification, contact the Architect for clarification prior to
proceeding.

1. Space Control Requirements: Provide occupancy/vacancy sensors with Manual- or Partial-ON functionality as indicated in all spaces except toilet rooms, storerooms, library stacks, or other applications where hands-free operation is desirable and Automatic-ON occupancy sensors are more appropriate. Provide Manual-ON occupancy/vacancy sensors for any enclosed office, conference room, meeting room, open plan system and training room. For spaces with multiple occupants, or where line-of-sight may be obscured, provide ceiling- or corner-mounted sensors and Manual-ON switches.

2. Task Lighting / Plug Loads: Provide automatic shut off of non essential plug loads and task lighting in spaces as required by the applicable energy code. Provide Automatic-ON of plug loads whenever spaces are occupied. For spaces with multiple occupants a single shut off consistent with the overhead lighting may be used for the area.

3. Daylit Areas: Provide daylight-responsive automatic control in all spaces (conditioned or unconditioned) where daylight contribution is available as defined by relevant local building energy code:
 1. All luminaires within code-defined daylight zones shall be controlled separately from luminaires outside of daylit zones.
 2. Daytime setpoints for total ambient illumination (combined daylight and electric light) levels that initiate
dimming shall be programmed in compliance with relevant local building energy codes.

3. Multiple-level switched daylight harvesting controls may be utilized for areas marked on drawings.

4. Provide smooth and continuous daylight dimming for areas marked on drawings. Daylighting control system may be designed to turn off electric lighting when daylight is at or above required lighting levels, only if system functions to turn lamps back on at dimmed level, rather than turning full-on prior to dimming.

4. Conference, meeting, training, auditoriums, and multipurpose rooms shall have controls that allow for independent control of each local control zone. Rooms larger than 300 square feet shall instead have at least four preset lighting scenes unless otherwise specified. Occupancy / vacancy sensors shall be provided to turn off all lighting in the space. Spaces with up to four moveable walls shall include controls that can be reconfigured when the room is partitioned.

2. Equipment Required: Lighting Control and Automation system as defined under this section covers the following equipment.

1. Digital Lighting Management (DLM) local network: Free topology, plug-in wiring system (Cat 5e) for power and data to room devices.

2. Digital Room Controllers: Self-configuring, digitally addressable one, two or three relay plenum-rated controllers for on/off control. Selected models include 0-10 volt
or line voltage forward phase control
dimming outputs and integral current
monitoring capabilities.

3. Digital Plug Load Controllers: Self-
configuring, digitally addressable, single
relay, plenum-rated application-specific
controllers. Selected models include
integral current monitoring capabilities.

4. Digital Fixture Controllers: Self-
configuring, digitally addressable one relay
fixture-integrated controllers for
on/off/0-10V dimming control.

5. Digital Occupancy Sensors: Self-configuring,
digitally addressable, calibrated occupancy
sensors with LCD display and two-way active
infrared (IR) communications.

6. Digital Switches: Self-configuring,
digitally addressable pushbutton on/off,
dimming, and scene switches with two-way
active infrared (IR) communications.

7. Handheld remotes for personal control:
On/Off, dimming and scene remotes for
control using infrared (IR) communications.
Remote may be configured in the field to
control selected loads or scenes without
special tools.

closed loop, multi-zone open loop and
single-zone dual-loop daylighting sensors
with two-way active infrared (IR)
communications for daylight harvesting using
switching, bi-level, tri-level or dimming
control.

9. Configuration Tools: Handheld remote for
room configuration and relay panel
programming provides two way infrared (IR)
communications to digital devices and allows
complete configuration and reconfiguration of the device / room from up to 30 feet away.

10. Digital Lighting Management (DLM) segment network: Linear topology, BACnet MS/TP network (1.5 twisted pair, shielded) to connect multiple DLM local networks for centralized control.

11. Network Bridge: Provides BACnet MS/TP-compliant digital networked communication between rooms, panels and the Segment Manager or building automation system (BAS) and automatically creates BACnet objects representative of connected devices.

12. Segment Manager: BACnet MS/TP-based controller with web browser-based user interface for system control, scheduling, power monitoring, room device parameter administration and reporting.

13. Programming and Configuration Software: Optional PC-native application capable of accessing DLM control parameters within a room, for the local network, via a USB adapter, or globally, for many segment networks simultaneously, via BACnet/IP communication.

14. Digital Lighting Management Relay Panel and Zone Controller: Provides up to 8, 24, or 48 mechanically latching relays. Relays include a manual override and a single push-on connector for easy installation or removal from the panel. Panel accepts program changes from handheld configuration tool for date and time, location, holidays, event scheduling, button binding and group programming. Provides BACnet MS/TP-compliant digital networked communication between
other lighting controls and/or building automation system (BAS). Zero relay Zone Controller primarily supports Digital Fixture Controller applications.

15. Emergency Lighting Control Unit (ELCU): Allows a standard lighting control device to control emergency lighting in conjunction with normal lighting in any area within a building.

3. Local Network LMRJ-Series: DLM local network is a free topology lighting control physical connection and communication protocol designed to control a small area of a building.

1. Features of the DLM local network include:

 1. Plug n’ Go automatic configuration and binding of occupancy sensors, switches and lighting loads to the most energy-efficient sequence of operation based upon the device attached.

 2. Simple replacement of any device in the local DLM network with a standard off the shelf unit without requiring significant commissioning, configuration or setup.

 3. Push n’ Learn configuration to change the automatic configuration, including binding and load parameters without tools, using only the buttons on the digital devices in the local network.

 4. Two-way infrared communications for control by handheld remotes, and configuration by a handheld tool including adjusting load parameters, sensor configuration and binding, within a line of sight of up to 30 feet from a sensor, wall switch or IR receiver.
2. Digital room devices connect to the local network using pre-terminated Cat 5e cables with RJ-45 connectors, which provide both data and power to room devices. Systems that utilize RJ-45 patch cords but do not provide serial communication data from individual end devices are not acceptable.

3. If manufacturer’s pre-terminated Cat5e cables are not used for the installation each cable must be individually tested and observed by authorized service representative following installation.

- DIGITAL LOAD CONTROLLERS (ROOM, PLUG LOAD AND FIXTURE CONTROLLERS)

1. Digital Load Controllers: Digital controllers for lighting zones, fixtures and/or plug loads automatically bind room loads to the connected control devices in the space without commissioning or the use of any tools. Provide controllers to match the room lighting and plug load control requirements. Controllers are simple to install, and do not have dip switches/potentiometers, or require special configuration for standard Plug n’ Go applications. Control units include the following features

 1. Automatic room configuration to the most energy-efficient sequence of operation based upon the devices in the room.
 2. Simple replacement using the default automatic configuration capabilities, a room controller may be replaced with an off-the-shelf device.
 3. Multiple room controllers connected together in a local network must automatically arbitrate with each other, without requiring any configuration or setup, so that
individual load numbers are assigned starting with load 1 to a maximum of 64, assigned based on each controller’s device ID’s from highest to lowest.

4. Device Status LEDs to indicate:
 1. Data transmission
 2. Device has power
 3. Status for each load
 4. Configuration status

5. Quick installation features including:
 1. Standard junction box mounting
 2. Quick low voltage connections using standard RJ-45 patch cable

6. Based on individual configuration, each load shall be capable of the following behavior on power up following the loss of normal power:
 1. Turn on to 100 percent
 2. Turn off
 3. Turn on to last level

7. Each load be configurable to operate in the following sequences based on occupancy:
 1. Auto-on/Auto-off (Follow on and off)
 2. Manual-on/Auto-off (Follow off only)

8. Polarity of each load output shall be reversible, via digital configuration, so that on is off and off is on.

9. BACnet object information shall be available for the following objects:
 1. Load status
 2. Schedule state, normal or after-hours
 3. Demand Response enable and disable
 4. Room occupancy status
 5. Total room lighting and plug loads watts

** NOTE TO SPECIFIER ** When metering is present in the Room
Controller, these additional objects shall also be available.

1. Electrical current
2. Total watts per controller
3. Total room watts/sq ft.
4. Force on/off all loads

10. UL 2043 plenum rated
11. Manual override and LED indication for each load
12. Zero cross circuitry for each load
13. All digital parameter data programmed into an individual room controller or plug load controller shall be retained in non-volatile FLASH memory within the controller itself. Memory shall have an expected life of no less than 10 years.

14. Dimming Room Controllers shall share the following features:
 1. Each load shall have an independently configurable preset on level for Normal Hours and After Hours events to allow different dimmed levels to be established at the start of both Normal Hours and After Hours events.
 2. Fade rates for dimming loads shall be specific to bound switch buttons, and the load shall maintain a default value for any bound buttons that do not specify a unique value.
 3. The following dimming attributes may be changed or selected using a wireless configuration tool:
 - Establish preset level for each load from 0-100 percent
 - Set high and low trim for each load
 - Initiate lamp burn in for each load of either 0, 12 or 100 hours
 4. Override button for each load provides the following functions:
 - Press and release for on/off control
 - Press and hold for dimming control
5. Each dimming output channel shall have an independently configurable minimum and maximum calibration trim level to set the dimming range to match the true dynamic range of the connected ballast or driver. LED level indicators on bound dimming switches shall utilize this new maximum and minimum trim.

6. Each dimming output channel shall have an independently configurable minimum and maximum trim level to set the dynamic range of the output within the new 0-100 percent dimming range defined by the minimum and maximum calibration trim.

7. Calibration and trim levels must be set per output channel. Devices that set calibration or trim levels per controller (as opposed to per load) are not acceptable.

8. All configuration shall be digital. Devices that set calibration or trim levels per output channel via trim pots or dip-switches are not acceptable.

15. On/Off Room Controllers shall include:
 1. Dual voltage (120/277 VAC, 60 Hz) capable rated for 20A total load
 2. One or two relay configuration
 3. Simple 150 mA switching power supply (Only 4 100 series devices on a Cat 5e local network)
 4. Three RJ-45 DLM local network ports with integral strain relief and dust cover
 5. WattStopper product numbers: LMRC-101, LMRC-102

16. On/Off/0-10V Dimming KO Mount Room Controllers shall include:
 1. Dual voltage (120/277 VAC, 60 Hz) capable rated for 10A total load
 2. Optional real time current and voltage monitoring (with – M Monitoring option).
 3. One or two relays configurations
 4. Smart 150 mA switching power supply
 5. Two RJ-45 DLM local network ports. Provide molded
strain relief ring
6. One dimming output per relay
 1. 0-10V Dimming – Where indicated, one 0-10 volt analog output per relay for control of compatible ballasts and LED drivers. The 0-10 volt output shall automatically open upon loss of power to the Room Controller to assure full light output from the controlled lighting.

7. Units capable of providing both Class 1 or Class 2 wiring for the 0-10V output
8. WattStopper product numbers: LMRC-111, LMRC-111-M, LMRC-112, or LMRC-112-M.

17. On/Off/0-10V Dimming Enhanced Room Controllers shall include:
 1. Dual voltage (120/277 VAC, 60 Hz) capable or 347 VAC, 60 Hz. 120/277 volt models rated for 20A total load; 347 volt models rated for 15A total load
 2. Built in real time current monitoring
 3. One, two or three relays configurations
 4. Smart 250 mA switching power supply
 5. Four RJ-45 DLM local network ports. Provide integral strain relief
 6. One dimming output per relay
 1. 0-10V Dimming – Where indicated, one 0-10 volt analog output per relay for control of compatible ballasts and LED drivers. The 0-10 volt output shall automatically open upon loss of power to the Room Controller to assure full light output from the controlled lighting (LMRC-110 series and 210 series).
 7. WattStopper product numbers: LMRC-211, LRMC-212, LMRC-213.

18. On/Off/ Forward Phase Dimming Room Controllers shall include:
 1. Dual voltage (120/277 VAC, 60 Hz) rated for 20A
total load, with forward phase dimmed loads derating to 16A for some load types
2. Built in real time current monitoring
3. One or two relays configurations
4. Smart 250 mA switching power supply
5. Four RJ-45 DLM local network ports. Provide integral strain relief
6. One dimming output per relay
 1. Line Voltage, Forward Phase Dimming – Where indicated, one forward phase control line voltage dimming output per relay for control of compatible two-wire or three-wire ballasts, LED drivers, MLV, forward phase compatible ELV, neon/cold cathode and incandescent loads. (LMRC-220 series)
7. WattStopper product numbers: LMRC-221, LMRC-222

19. Plug Load Controllers shall include:
 1. 120 VAC, 60 Hz rated for 20A total load. Controller carries application-specific UL 20 rating for receptacle control.
 2. One relay configuration with additional connection for unswitched load
 3. Configurable additive time delay to extend plug load time delay beyond occupancy sensor time delay (e.g. a 10 minute additive delay in a space with a 20 minute occupancy sensor delay ensures that plug loads turn off 30 minutes after the space is vacated).
 4. Factory default operation is Auto-on/Auto-off, based on occupancy
 5. Real time current monitoring of both switched and un-switched load (LMPL-201 only)
 6. Switching power supply
 1. Simple 150mA – Only 4 100 series devices on a Cat 5e local network (LMPL-101)
 2. Smart 250mA (LMPL-201)
 7. RJ-45 DLM local network ports
1. Three RJ-45 ports (LMPL-101)
2. Four RJ-45 ports (LMPL-201)

8. Provide a wireless transmitter that can be connected to any Cat 5e network of the lighting controls that will communicate the room’s occupancy state to receptacles mounted in the area with integral relays. Binding of the transmitter to the receptacles shall be accomplished by pressing a test button on the transmitter, and then a test button on the receptacle.

9. WattStopper product numbers:

10. Fixture Controllers shall include
 1. A form factor and product ratings to allow various OEM fixture manufacturers to mount the device inside the ballast/driver cavity of standard-sized fluorescent or LED general lighting fixtures.
 2. One 3A 120/277V rated mechanically held relay.
 3. Programmable behavior on power up following the loss of normal power:
 1. Turn on to 100 percent
 2. Turn off
 3. Turn on to last level
 4. Requirement for 7 mA of 24VDC operating power from the DLM local network.
 5. Fixture Controller does not require a connection to a neutral conductor to operate, and unlike other types of Load Controllers it does not contribute power to the DLM local network to drive accessory devices.
 6. Power to drive the LMFC Fixture Controller electronics can come from any Room or Plug
Load Controller, LMPB-100 Power Booster and/or LMZC-301 Zone Controller (described later in the LMCP LIGHTING CONTROL PANELS specification section).

7. 0-10V dimming capability via a single 0-10 volt analog output from the device for control of compatible ballasts and LED drivers. The 0-10 volt output shall automatically open upon loss of power to the Fixture Controller.

8. Connect to a single or dual RJ-45 adaptor with 24 inch leads. Single adaptor mounts in a 1/2 inch KO and dual adaptor in a 2.2 by 1.32 inch rectangular hole for connection to the DLM local network.

9. Adaptor leads are insulated for use in a fixture cavity, and the lead length allows the OEM fixture manufacturer flexibility to position the Fixture Controller and the RJ45 jack in the best locations on each fixture.

10. A complete set of dimming features described above in the paragraph detailing On/Off/Dimming Enhanced Room Controllers.

DIGITAL WALL OR CEILING MOUNTED OCCUPANCY SENSOR

1. Digital Occupancy Sensors shall provide graphic LCD display for digital calibration and electronic documentation. Features include the following:

 1. Digital calibration and pushbutton configuration for the following variables:
 1. Sensitivity, 0-100 percent in 10 percent increments
 2. Time delay, 1-30 minutes in 1 minute
increments
3. Test mode, Five second time delay
4. Detection technology, PIR, Ultrasonic or Dual Technology activation and/or re-activation.
5. Walk-through mode
2. Load parameters including Auto/Manual-ON, blink warning, and daylight enable/disable when photosensors are included in the DLM local network.
3. Programmable control functionality including:
 1. Each sensor may be programmed to control specific loads within a local network.
 2. Sensor shall be capable of activating one of 16 user-definable lighting scenes.
 3. Adjustable retrigger time period for manual-on loads. Load will retrigger (turn on) automatically within a configurable period of time (default 10 seconds) after turning off.
 4. On dual technology sensors, independently configurable trigger modes are available for both Normal (NH) and After Hours (AH) time periods. The retrigger mode can be programmed to use the following technologies:
 5. Ultrasonic and Passive Infrared
 6. Ultrasonic or Passive Infrared
 7. Ultrasonic only
 8. Passive Infrared only
 9. Independently configurable sensitivity settings for passive infrared and ultrasonic technologies (on dual
technology sensors) for both Normal (NH) and After Hour (AH) time periods.

4. One or two RJ-45 port(s) for connection to DLM local network.

5. Two-way infrared (IR) transceiver to allow remote programming through handheld commissioning tool and control by remote personal controls.

6. Device Status LEDs, which may be disabled for selected applications, including:
 1. PIR detection
 2. Ultrasonic detection
 3. Configuration mode
 4. Load binding

7. Assignment of occupancy sensor to a specific load within the room without wiring or special tools.

9. All digital parameter data programmed into an individual occupancy sensor shall be retained in non-volatile FLASH memory within the sensor itself. Memory shall have an expected life of no less than 10 years.

2. BACnet object information shall be available for the following objects:
 1. Detection state
 2. Occupancy sensor time delay
 3. Occupancy sensor sensitivity, PIR and Ultrasonic

3. Units shall not have any dip switches or potentiometers for field settings

4. Multiple occupancy sensors may be installed in a room by simply connecting them to the free topology DLM local network. No additional configuration will be required.

5. WattStopper product numbers: LMPX, LMDX, LMPC, LMUC, LMDC
- DIGITAL WALL SWITCH OCCUPANCY SENSORS
 1. Digital Occupancy Sensors shall provide scrolling LCD display for digital calibration and electronic documentation. Features include the following:
 1. Digital calibration and pushbutton configuration for the following variables:
 1. Sensitivity: 0-100 percent in 10 percent increments
 2. Time delay: 1-30 minutes in 1 minute increments
 3. Test mode: Five second time delay
 4. Detection technology: PIR, Dual Technology activation and/or re-activation.
 5. Walk-through mode
 6. Load parameters including Auto/Manual-ON, blink warning, and daylight enable/disable when photosensors are included in the DLM local network.
 2. Programmable control functionality including:
 1. Each sensor may be programmed to control specific loads within a local network.
 2. Sensor shall be capable of activating one of 16 user-definable lighting scenes.
 3. Adjustable retrigger time period for manual-on loads. Load will retrigger (turn on) automatically during the configurable period of time (default 10 seconds) after turning off.
 4. On dual technology sensors, independently configurable trigger modes are available for both Normal (NH) and After Hours (AH) time periods. The retrigger mode can be
programmed to use the following technologies:

- Ultrasonic and Passive Infrared
- Ultrasonic or Passive Infrared
- Ultrasonic only
- Passive Infrared only

5. Independently configurable sensitivity settings for passive infrared and ultrasonic technologies (on dual technology sensors) for both Normal (NH) and After Hour (AH) time periods.

6. Two RJ-45 ports for connection to DLM local network.

7. Two-way infrared (IR) transceiver to allow remote programming through handheld configuration tool and control by remote personal controls.

8. Device Status LEDs including
 1. PIR detection
 2. Ultrasonic detection
 3. Configuration mode
 4. Load binding

9. Assignment of any occupancy sensor to a specific load within the room without wiring or special tools.

10. Assignment of local buttons to specific loads within the room without wiring or special tools

11. Manual override of controlled loads

12. All digital parameter data programmed into an individual wall switch sensor shall be retained in non-volatile FLASH memory within the wall switch sensor itself. Memory shall have an expected life of no less than 10 years.

3. BACnet object information shall be available
for the following objects:

1. Detection state
2. Occupancy sensor time delay
3. Occupancy sensor sensitivity, PIR and Ultrasonic
4. Button state
5. Switch lock control
6. Switch lock status

4. Units shall not have any dip switches or potentiometers for field settings.

5. Multiple occupancy sensors may be installed in a room by simply connecting them to the free topology DLM local network. No additional configuration will be required.

6. Two-button wall switch occupancy sensors, when connected to a single relay dimming room or fixture controller, shall operate in the following sequence as a factory default:

 1. Left button
 1. Press and release – Turn load on
 2. Press and hold – Raise dimming load

 2. Right button
 1. Press and release – Turn load off
 2. Press and hold – Lower dimming load

3. Low voltage momentary pushbuttons shall include the following features:

 1. Load/Scene Status LED on each switch button with the following characteristics:
 1. Bi-level LED
 2. Dim locator level indicates power to switch
 3. Bright status level indicates that load or
scene is active

2. The following button attributes may be changed or selected using a wireless configuration tool:
 1. Load and Scene button function may be reconfigured for individual buttons (from Load to Scene, and vice versa).
 2. Individual button function may be configured to Toggle, On only or Off only.
 3. Individual scenes may be locked to prevent unauthorized change.
 4. Fade Up and Fade Down times for individual scenes may be adjusted from 0 seconds to 18 hours.
 5. Ramp rate may be adjusted for each dimmer switch.
 6. Switch buttons may be bound to any load on any load controller or relay panel and are not load type dependent; each button may be bound to multiple loads.
 7. WattStopper part numbers: LMPW, LMDW. Available in white, light almond, ivory, grey, red and black; compatible with wall plates with decorator
opening.

- **DIGITAL WALL SWITCHES**
 1. Low voltage momentary pushbutton switches in 1, 2, 3, 4, 5 and 8 button configuration. Wall switches shall include the following features:
 1. Two-way infrared (IR) transceiver for use with personal and configuration remote controls.
 2. Removable buttons for field replacement with engraved buttons and/or alternate color buttons. Button replacement may be completed without removing the switch from the wall.
 3. Configuration LED on each switch that blinks to indicate data transmission.
 4. Load/Scene Status LED on each switch button with the following characteristics:
 1. Bi-level LED
 2. Dim locator level indicates power to switch
 3. Bright status level indicates that load or scene is active
 4. Dimming switches shall include seven bi-level LEDs to indicate load levels using 14 steps.
 5. Programmable control functionality including:
 1. Button priority may be configured to any BACnet priority level, from 1-16, corresponding to networked operation allowing local actions to utilize life safety priority
 2. Scene patterns may be saved to any button other than dimming rockers. Once set, buttons may be digitally locked to prevent overwriting of the preset levels.
6. All digital parameter data programmed into an individual wall switch shall be retained in non-volatile FLASH memory within the wall switch itself. Memory shall have an expected life of no less than 10 years.

2. BACnet object information shall be available for the following objects:
 1. Button state
 2. Switch lock control
 3. Switch lock status

3. Two RJ-45 ports for connection to DLM local network.

4. Multiple digital wall switches may be installed in a room by simply connecting them to the free topology DLM local network. No additional configuration shall be required to achieve multi-way switching.

5. Load and Scene button function may be reconfigured for individual buttons from Load to Scene, and vice versa.
 1. Individual button function may be configured to Toggle, On only or Off only.
 2. Individual scenes may be locked to prevent unauthorized change.
 3. Fade Up and Fade Down times for individual scenes may be adjusted from 0 seconds to 18 hours.
 4. Ramp rate may be adjusted for each dimmer switch.
 5. Switch buttons may be bound to any load on any load controller or relay panel and are not load type dependent; each button may be bound to multiple loads.

compatible with wall plates with decorator opening.

• DLM HANDHELD USER INTERFACE REMOTES
 1. Battery-operated handheld devices in 1, 2 and 5 button configurations for remote switching or dimming control. Remote controls shall include the following features:
 1. Two-way infrared (IR) transceiver for line of sight communication with DLM local network within up to 30 feet.
 2. LED on each button confirms button press.
 3. Load buttons may be bound to any load on a load controller or relay panel and are not load type dependent; each button may be bound to multiple loads.
 4. Inactivity timeout to save battery life.
 2. Provide with a wall mount holster and mounting hardware for each remote.

• DIGITAL DAYLIGHTING SENSORS
 1. Digital daylighting sensors shall work with load controllers and relay panels to provide automatic switching, bi-level, or tri-level or dimming daylight harvesting capabilities for any load type connected to the controller or panel. Daylighting sensors shall be interchangeable without the need for rewiring.
 1. Closed loop sensors measure the ambient light in the space and control a single lighting zone.
 2. Open loop sensors measure incoming daylight in the space, and are capable of controlling up to three lighting zones.
 3. Dual loop sensors measure both ambient and incoming daylight in the space to insure
that proper light levels are maintained as changes to reflective materials are made in a single zone

2. Digital daylighting sensors shall include the following features:
 1. Sensor’s internal photodiode shall only measure lightwaves within the visible spectrum. The photodiode’s spectral response curve shall closely match the entire photopic curve. Photodiode shall not measure energy in either the ultraviolet or infrared spectrums. Photocell shall have a sensitivity of less than 5 percent for any wavelengths less than 400 nanometers or greater than 700 nanometers.
 2. Sensor light level range shall be from 1-6,553 foot-candles (fc).
 3. Capability of ON/OFF, bi-level or tri-level switching, or dimming, for each controlled zone, depending on the selection of load controller(s) and load binding to controller(s).
 4. For switching daylight harvesting, the photosensor shall provide a field-selectable deadband, or a separation, between the “ON Setpoint” and the “OFF Setpoint” that will prevent the lights from cycling excessively after they turn off.
 5. For dimming daylight harvesting, the photosensor shall provide the option, when the daylight contribution is sufficient, of turning lights off or dimming lights to a field-selectable minimum level.
 6. Photosensors shall have a digital, independently configurable fade rate for both increasing and decreasing light level in units of percent per second.
7. Photosensors shall provide adjustable cut-off time. Cut-off time is defined by the number of selected minutes the load is at the minimum output before the load turns off. Selectable range between 0-240 minutes including option to never cut-off.

8. Optional wall switch override shall allow occupants to reduce lighting level to increase energy savings or, if permitted by system administrator, raise lighting levels for a selectable period of time or cycle of occupancy.

9. Integral infrared (IR) transceiver for configuration and/or commissioning with a handheld configuration tool, to transmit detected light level to wireless configuration tool, and for communication with personal remote controls.

10. Configuration LED status light on device that blinks to indicate data transmission.

11. Status LED indicates test mode, override mode and load binding.

12. Recessed switch on device to turn controlled load(s) ON and OFF.

13. BACnet object information shall be available for the following daylighting sensor objects, based on the specific photocell’s settings:
 1. Light level
 2. Day and night setpoints
 3. Off time delay
 4. On and off setpoints
 5. Up to three zone setpoints
 6. Operating mode – on/off, bi-level, tri-level or dimming

14. One RJ-45 port for connection to DLM local network.
15. A choice of accessories to accommodate multiple mounting methods and building materials. Photosensors may be mounted on a ceiling tile, skylight light well, suspended lighting fixture or backbox. Standard tube photosensors accommodate mounting materials from 0-0.62 inch thick (LMLS-400, LMLS-500). Extended tube photosensors accommodate mounting materials from 0.62 to 1.25 inches thick (LMLS-400-L, LMLS-500-L). Mounting brackets are compatible with J boxes (LMLS-MB1) and wall mounting (LMLS-MB2). LMLS-600 photosensor to be mounted on included bracket below skylight well.

16. Any load or group of loads in the room can be assigned to a daylighting zone

17. Each load within a daylighting zone can be individually enabled or disabled for discrete control (load independence).

18. All digital parameter data programmed into a photosensor shall be retained in non-volatile FLASH memory within the photosensor itself. Memory shall have an expected life of no less than 10 years.

3. Closed loop digital photosensors shall include the following additional features:

 1. An internal photodiode that measures light in a 100-degree angle, cutting off the unwanted light from bright sources outside of this cone.

 2. Automatic self-calibration, initiated from the photosensor, a wireless configuration tool or a PC with appropriate software.

 3. Automatically establishes application-specific setpoints following self-calibration. For switching operation, an adequate deadband between the ON and OFF
setpoints shall prevent the lights from cycling; for dimming operation a sliding setpoint control algorithm with separate Day and Night setpoints shall prevent abrupt ramping of loads.

4. WattStopper Product Number: LMLS-400, LMLS-400-L.

4. Open loop digital photosensors shall include the following additional features:

1. An internal photodiode that measures light in a 60-degree angle (cutting off the unwanted light from the interior of the room).

2. Automatically establishes application-specific setpoints following manual calibration using a wireless configuration tool or a PC with appropriate software. For switching operation, an adequate deadband between the ON and OFF setpoints for each zone shall prevent the lights from cycling; for dimming operation, a proportional control algorithm shall maintain the design lighting level in each zone.

3. Each of the three discrete daylight zones can include any non overlapping group of loads in the room.

4. WattStopper Product Number: LMLS-500, LMLS-500-L.

5. Dual loop digital photosensors shall include the following additional features:

1. Close loop portion of dual loop device must have an internal photodiode that measures light in a 100 degree angle, cutting off the unwanted light from sources outside of this con

2. Open loop portion of dual loop device must have an internal photodiode that can measure
light in a 60 degree angle, cutting off the unwanted light from the interior of the room.

3. Automatically establishes application-specific set-points following self-calibration. For switching operation, an adequate deadband between the ON and OFF setpoints shall prevent the lights from cycling; for dimming operation a sliding setpoint control algorithm with separate Day and Night setpoints shall prevent abrupt ramping of load.

4. Device must reference closed loop photosensor information as a base line reference. The device must be able to analyze the open loop photosensor information to determine if an adjustment in light levels is required.

5. Device must be able to automatically commission setpoints each night to provide adjustments to electrical lighting based on changes in overall lighting in the space due to changes in reflectance within the space or changes to daylight contribution based on seasonal changes.

6. Device must include extendable mounting arm to properly position sensor within a skylight well.

7. WattStopper product number LMLS-600

- DIGITAL PARTITION CONTROLS
 1. Partition controls shall enable manual or automatic coordination of lighting controls in flexible spaces with up to four moveable walls by reconfiguring the connected digital switches and occupancy sensors.
 2. Four-button low voltage pushbutton switch for
manual control.

1. Two-way infrared (IR) transceiver for use with configuration remote control.
2. Removable buttons for field replacement with engraved buttons and/or alternate color buttons. Button replacement may be completed without removing the switch from the wall.
3. Configuration LED on each switch that blinks to indicate data transmission.
4. Each button represents one wall; Green button LED indicates status.
5. Two RJ-45 ports for connection to DLM local network.

** NOTE TO SPECIFIER ** Coordinate the following paragraph with Movable Walls and Partitions with automatic controls specified in other section of this specification.

1. Coordinate contact closure interface for automatic control via input from limit switches on movable walls specified in Section 10 22 43 – Sliding Partitions.
 1. Operates on Class 2 power supplied by DLM local network.
 2. Includes 24VDC output and four input terminals for maintained third party contract closure inputs.
 3. Input max. sink/source current: 1-5mA
 4. Logic input signal voltage High: > 18VDC
 5. Logic input signal voltage Low: < 2VDC
 6. Four status LEDs under hinged cover indicate if walls are open or closed; supports LMPS-104 as remote status indicator.
 7. Two RJ-45 ports for connection to DLM local network.
8. WattStopper part number: LMIO-102

HANDHELD CONFIGURATION TOOLS

1. Provide a wireless configuration tool to facilitate customization of DLM local networks using two-way infrared communications, and/or PC software that connects to each local network via a USB interface.

2. Features and functionality of the wireless configuration tool shall include but not be limited to:

 1. Two-way infrared (IR) communication with DLM IR-enabled devices within a range of approximately 30 feet.
 2. High visibility organic LED (OLED) display, pushbutton user interface and menu-driven operation.
 3. Must be able to read and modify parameters for load controllers and relay panels, occupancy sensors, wall switches, daylighting sensors, network bridges, and identify DLM devices by type and serial number.
 4. Save up to eight occupancy sensor setting profiles, and apply profiles to selected sensors.
 5. Temporarily adjust light level of any load(s) on the local network, and incorporate those levels in scene setting. Set room mode for testing of Normal Hours (NH) and After Hours (AH) parameter settings.
 6. Adjust or fine-tune daylighting settings established during auto-configuration, and input light level data to complete configuration of open loop daylighting controls.
7. Set room mode for testing of Normal Hours (NH) and After Hours (AH) parameter settings.
8. Verify status of building level network devices.
3. WattStopper Product Numbers: Handheld LMCT-100

DLM SEGMENT NETWORK

1. Provide a segment network using linear topology, BACnet-based MS/TP subnet to connect DLM local networks (rooms) and LMCP relay panels for centralized control.

 1. Each connected DLM local network shall include a single network bridge (LMBC-300), and the network bridge is the only room-based device that is connected to the segment network.

 2. Network bridges, relay panels and segment managers shall include terminal blocks, with provisions for separate “in” and “out” terminations, for segment network connections.

 3. Segment network utilizes 1.5 twisted pair, shielded, cable supplied by the lighting control manufacturer. Maximum cable run for each segment is 4,000 feet. Conductor-to-conductor capacitance of the twisted pair shall be less than 30 pf/ft and have a characteristic impedance of 120 Ohms.

 4. Network wire jacket is available in high visibility green, white, or black.

 5. Substitution of manufacturer-supplied cable is not permitted and may void the warranty, if non-approved cable is installed, and if terminations are not completed according to manufacturer’s specific requirements.

 6. Network signal integrity requires that each conductor and ground wire be correctly
terminated at every connected device.

7. Segment networks shall be capable of connecting to any of the following: BACnet-compliant BAS (provided by others) directly via MS/TP, or BACnet/IP via an NB-ROUTER or LMSM Unit. Systems whose room-connected network infrastructure require gateway devices to provide BACnet data to a BAS are unacceptable.

- NETWORK BRIDGE

1. Network bridge module connects a DLM local network to a BACnet-compliant segment network for communication between rooms, relay panels and a segment manager or BAS. Each local network shall include a network bridge component to provide a connection to the local network room devices. Network bridge shall use industry standard BACnet MS/TP network communication and an optically isolated EIA/TIA RS-485 transceiver.

2. Provide Plug n’ Go operation to automatically discover room devices connected to the local network and make all device parameters visible to the segment manager via the segment network. No commissioning shall be required for set up of the network bridge on the local network.

3. Network bridge shall automatically create standard BACnet objects for selected DLM devices to allow any BACnet-compliant BAS to include lighting control and power monitoring features as provided by the DLM devices on each local network. BACnet
objects will be created for the addition or replacement of any given DLM device for the installed life of the system. Products requiring that an application-specific point database be loaded to create or map BACnet objects are not acceptable. Systems not capable of providing BACnet data for control devices via a dedicated BACnet Device ID and physical MS/TP termination per room are not acceptable. Standard BACnet objects shall be provided as follows:

1. Read/write the normal or after hours schedule state for the room
2. Read the detection state of each occupancy sensor
3. Read the aggregate occupancy state of the room
4. Read/write the On/Off state of loads
5. Read/write the dimmed light level of loads
6. Read the button states of switches
7. Read total current in amps, and total power in watts through the load controller
8. Read/write occupancy sensor time delay, PIR sensitivity and ultrasonic sensitivity settings
9. Activate a preset scene for the room
10. Read/write daylight sensor fade time and day and night setpoints
11. Read the current light level, in foot-candles, from interior and exterior photosensors and photocells
12. Set daylight sensor operating mode
13. Read/write wall switch lock status
14. Read watts per square foot for the entire controlled room
15. Write maximum light level per load for demand response mode
16. Read/write activation of demand response mode for the room
17. Activate/restore demand response mode for the room

4. WattStopper product numbers: LMBC-300

- LMCP LIGHTING CONTROL PANELS AND LMZC ZONE CONTROLLER

1. Hardware: Provide LMCP lighting control panels in the locations and capacities as indicated on the Drawing and schedules. Each panel shall be of modular construction and consist of the following components:

 1. Enclosure/Tub shall be NEMA 1, sized to accept an interior with 1 – 8 relays, 1 – 24 relays and 6 four-pole contactors, or 1 – 48 relays and 6 four-pole contactors.

 2. Cover shall be configured for surface or flush wall mounting of the panel as indicated on the plans. LMCP panel cover shall have a hinged and lockable door with restricted access to line voltage section of the panel.

 3. Interior assembly shall be supplied as a factory assembled component specifically designed and listed for field installation. Interior construction shall provide total isolation of high voltage (Class 1) wiring from low voltage (Class 2) wiring within the assembled panel. Interior assembly shall include intelligence boards, power supply, DIN rails for mounting optional Class 2 control devices, and individually replaceable latching type relays. Panel interiors shall include the following features:
1. Removable, plug-in terminal blocks with connections for all low voltage terminations.

2. Individual terminal block, override pushbutton, and LED status light for each relay.

3. Direct wired switch inputs associated with each relay shall support 2-wire momentary switches only.

4. Digital inputs (four RJ-45 jacks) shall support 1-, 2-, 3-, 4-, and 8-button digital switches; digital IO modules capable of receiving 0-5V or 0-10V analog photocell inputs; digital IO modules capable of receiving momentary or maintained contact closure inputs or analog sensor inputs; digital daylighting sensors; and digital occupancy sensors. Inputs are divided into two separate digital networks, each capable of supplying 250mA to connected devices.

5. True relay state shall be indicated by the on-board LED and shall be available to external control devices and systems via BACnet.

6. Automatically sequenced operation of relays to reduce impact on the electrical distribution system when large loads are controlled simultaneously.

7. Group and pattern control of relays shall be provided through a simple keypad interface from a handheld IR programmer. Any set of relays can be associated with a group for direct on/off control or pattern (scene)
control via a simple programming sequence using the relay override pushbuttons and LED displays for groups 1-8 or a handheld IR programmer for groups 1-99.

8. Relay group status for shall be provided through LED indicators for groups 1-8 and via BACnet for groups 1-99. A solid LED indicates that the last group action called for an ON state and relays in the group are on or in a mixed state.

4. Single-pole latching relays with modular plug-in design. Relays shall provide the following ratings and features:

1. Electrical:
 - 30 amp ballast at 277V
 - 20 amp ballast at 347V
 - 20amp tungsten at 120V
 - 30 amp resistive at 347V
 - 5 HP motor at 120V
 - 14,000 amp short circuit current rating (SCCR) at 347V
 - Relays shall be specifically UL 20 listed for control of plug-loads

2. Mechanical:
 - Replaceable, 1/2 inch KO mounting with removable Class 2 wire harness.
 - Actuator on relay housing provides manual override and visual status indication, accessible from Class 2 section of panel.
 - Dual line and load terminals each support two #14 – #12 solid
or stranded conductors.
- Tested to 300,000 mechanical on/off cycles.

3. Isolated low voltage contacts provide for true relay status feedback and pilot light indication.

4. Power supply shall be a multi-voltage transformer assembly with rated power to supply all electronics, occupancy sensors, switches, pilot lights, and photocells as necessary to meet the project requirements. Power supply to have internal over-current protection with automatic reset and metal oxide varistor protection.

5. Where indicated, lighting control panels designated for control of emergency lighting shall be provided with factory installed provision for automatic bypass of relays controlling emergency circuits upon loss of normal power. Panels shall be properly listed and labeled for use on emergency lighting circuits and shall meet the requirements of UL924 and NFPA 70 – Article 700.

6. Integral system clock shall provide scheduling capabilities for panel-only projects without DLM segment networks or BAS control.

 1. Each panel shall include digital clock capability able to issue system wide automation commands to up to 11 other panels for a total of 12 networked lighting control panels. Clock shall provide capability for up to 254
independent schedule events per panel for each of the ninety-nine system wide channel groups.

2. Clock capability of each panel shall support the time-based energy saving requirements of applicable local energy codes.

3. Clock module shall provide astronomic capabilities, time delays, blink warning, daylight savings, and holiday functions and will include a battery back up for clock function and program retention in non-volatile FLASH memory. Clocks that require multiple events to meet local code lighting shut off requirements shall not be allowed.

4. Clock capability of each panel shall operate on a basis of ON/OFF or Normal Hours/After Hours messages to automation groups that implement pre-configured control scenarios. Scenarios shall include:
 - Scheduled ON / OFF
 - Manual ON / Scheduled OFF
 - Astro ON / OFF (or Photo ON / OFF)
 - Astro and Schedule ON / OFF (or Photo and Schedule ON / OFF)

5. User interface shall be a portable IR handheld remote control capable of programming any panel in the system
6. Clock capability of each panel shall employ non-volatile memory and shall retain user programming and time for a minimum of 10 years.

7. Schedules programmed into the clock of any one panel shall be capable of executing panel local schedule or Dark/Light (photocell or Astro) events for that panel in the event that global network communication is lost. Lighting control panels that are not capable of executing events independently of the global network shall not be acceptable.

7. Lighting control panel can operate as a stand-alone system, or can support schedule, group, and photocell control functions, as configured in a Segment Manager controller, via a segment network connection.

8. Lighting control panel shall support digital communications to facilitate the extension of control to include interoperation with building automation systems and other intelligent field devices. Digital communications shall be RS485 MS/TP-based using the BACnet protocol.

1. Panel shall have provision for an individual BACnet device ID and shall support the full 222 range (0 – 4,193,304). The device ID description property
shall be writable via the network to allow unique identification of the lighting control panel on the network.

2. Panel shall support MS/TP MAC addresses in the range of 0 – 127 and baud rates of 9600k, 38400k, 76800k, and 115.2k bits per second.

3. Lighting control relays shall be controllable as binary output objects in the instance range of 1 – 64. The state of each relay shall be readable and writable by the BAS via the object present value property.

4. Lighting control relays shall report their true on/off state as binary input objects in the instance range of 1 – 64.

5. The 99 group Normal Hours/After Hours control objects associated with the panel shall be represented by binary value objects in the instance range of 201 – 299. The occupancy state of each channel group shall be readable and writable by the BAS via the object present value property. Commanding 1 to a channel group will put all relays associated with the channel into the normal hours mode. Commanding 0 or NULL shall put the relays into the after hours mode.

6. Setup and commissioning of panel
shall not require manufacturer-specific software or a computer. All configuration of the lighting control panel shall be performed using standard BACnet objects or via the handheld IR programming remote. Provide BACnet objects for panel setup and control as follows:

- **Binary output objects in the instance range of 1 – 64 (one per relay) for on/off control of relays.**
- **Binary value objects in the instance range of 1 – 99 (one per channel) for normal hours/after hours schedule control.**
- **Binary input objects in the instance range of 1 – 64 (one per relay) for reading true on/off state of the relays.**
- **Analog value objects in the instance range of 101 – 199 (one per channel group) shall assign a blink warn time value to each channel. A value of 5 shall activate the blink warn feature for the channel and set a 5-minute grace-time period. A value of 250 shall activate the sweep feature for the channel and enable the use of sweep type automatic**
7. Description property for all objects shall be writable via the network and shall be saved in non-volatile memory within the panel.

8. BO and BV1 – 99 objects shall support BACnet priority array with a relinquish default of off and after hours respectively. Prioritized writes to the channel BV objects shall propagate prioritized control to each member relay in a way analogous to the BACnet Channel object described in addendum aa. (http://www.bacnet.org/Addenda/Add-135-2010aa.pdf)

9. Panel-aggregate control of relay Force Off at priority 2 shall be available via a single BV5 object. Force On at priority 1 shall be available via a single BV4 object.

10. Lockout of all digital switch buttons connected to a given panel shall be command-able via a single BV2 object. The lock status of any connected switch station shall be represented as BV101-196.

9. In addition to the LMCP Relay Panels, an LMZC Zone Controller panel shall be available for zero-relay applications. The panel is designed for applications where LMFC-011 Fixture Controllers or other distributed load controllers are
used to switch and/or dim the controlled loads. Key similarities to and differences from the LMCP panel design shall include:

1. Use the same intelligence board as the LMCP relay panel.
2. Shall not include relay driver boards or relays.
3. Have a removable interior section to facilitate installation, and a Tub/Cover. Cover is for surface mounting applications only.
4. Tub shall have two interior KOs to allow installation of LMPB-100 Power Boosters. Each installed Power Booster can provide an additional 150 mA for either of the two available DLM local networks provided by the LMZC.
5. All programming and networking (whether DLM Local Network and/or Segment Network) capabilities in the LMZC Zone Controller shall be similar to capabilities for LMCP relay panels, except for functions designed for panel-mounted HDR relays.

10. To aid in project start up, if LMFC Fixture Controllers are connected to an LMZC Zone Controller, Plug n’ Go automatic configuration will establish a unique sequence of operation so that all LMFC-controlled fixtures will turn on to 50 percent output when any
digital occupancy sensor detects motion.

5. User Interface: Each lighting control panel system shall be supplied with at least one handheld configuration tool (LMCT-100). As a remote programming interface the configuration tool shall allow setup, configuration, and diagnostics of the panel without the need for software or connection of a computer. User interface shall have the following panel-specific functions as a minimum:

1. Set network parameters including panel device ID, MS/TP MAC address, baud rate and max master range.

2. Relay Group creation of up to 99 groups. Group creation shall result in programming of all seven key relay parameters for member relays. The seven parameters are as follows: After-hours Override Time Delay, Normal Hours Override Time Delay, Action on Transition to Normal Hours, Action on Transition to After Hours, Sensor Action During Normal Hours, Sensor Action During After Hours, Blink-Warn Time for After Hours.

3. Program up to 254 separate scheduled events. Events shall occur on seven day intervals with each day selectable as active or inactive, and shall be configurable as to whether the event is active on holidays. Holidays are also defined through the User
4. Program up to 32 separate Dark/Light events. Events shall have a selectable source as either calculated Astro with delay, or a digital IO module with an integral 0-5V or 0-10V analog photocell. Dark/Light events shall occur on seven day intervals with each day selectable as active or inactive, and shall be configurable as to whether the event is active on holidays.

5. Button binding of digital switches to groups shall be accessible via the handheld IR remote and accomplished from the digital switch station.

6. Programming of panel location information shall be accomplished by the handheld IR remote and include at a minimum LAT, LON, DST zone, and an approximate city/state location.

7. WattStopper Product Number: LMCT-100

 SEGMENT MANAGER

1. For networked applications, the Digital Lighting Management system shall include at least one segment manager to manage network communication. It shall be capable of serving up a graphical user interface via a standard web browser utilizing either unencrypted TCP/IP traffic via a configurable port (default is 80) or 256 bit AES encrypted SSL TCP/IP traffic via a configurable port (default is 443).

2. Each segment manager shall have integral support for at least three segment networks. Segment networks may alternately be connected to the segment manager via external BACnet-to-IP interface.
routers and switches, using standard Ethernet structured wiring. Each router shall accommodate one segment network. Provide the quantity of routers and switches as shown on the Drawings.

3. Operational features of the Segment Manager shall include the following:

1. Connection to PC or LAN via standard Ethernet TCP/IP via standard Ethernet TCP/IP with the option to use SSL encrypted connections for all traffic.

2. Easy to learn and use graphical user interface, compatible with Internet Explorer 8, or equal browser. The Segment Manager shall not require installation of any lighting control software on an end-user PC.

3. Log in security capable of restricting some users to view-only or other limited operations.

4. Segment Manager shall provide two main sets of interface screens – those used to initially configure the unit (referred to as the config screens), and a those used to allow users to dynamic monitor the performance of their system, and provide a centralized scheduling interface. Capabilities using the Config Screens shall include:

 1. Automatic discovery of DLM devices and relay panels on the segment network(s). Commissioning beyond activation of the discovery function shall not be required to provide communication, monitoring or control of all local networks and lighting control panels.

 2. Allow information for all discovered DLM devices to be imported into the
Segment Manager via a single XML based site file from the WattStopper LMCS Software, significantly reducing the time needed to make a system usable by the end user. Importable information can include text descriptions of every DLM component and individual loads, and automatic creation of room location information and overall structure of DLM network. Info entered into LMCS should not have to be re-entered manually via keystrokes into the Segment Manager.

3. After discovery, all rooms and panels shall be presented in a standard navigation tree format. Selecting a device from the tree will allow the device settings and operational parameters to be viewed and changed by the user.

4. Ability to view and modify DLM device operational parameters. It shall be possible to set device parameters independently for normal hours and after hours operation including sensor time delays and sensitivities, and load response to sensor including Manual-On or Auto-On.

5. Provide capabilities for integration with a BAS via BACnet protocol. At a minimum, the following points shall be available to the BAS via BACnet IP connection to the segment manager: room occupancy state; room schedule mode; room switch lock control; individual occupancy sensor state; room lighting power; room plug-load
power; load ON/OFF state; load dimming level; panel channel schedule state; panel relay state; and Segment Manager Group schedule state control. Any of above items shall be capable of being moved into an “Export Table” that will provide any integrator with only the data they need, and by using the Export Table effectively create a firewall between the integrator’s request for info and the overall system performance.

5. Capabilities using the Segment Manager’s Dashboard Screens shall include:

1. A dynamic “tile” based interface that allows easy viewing of each individual room’s lighting and plug load power consumption, and lighting and plug load power density (power consumption information requires Enhanced DLM Room and Plug Load Controllers with integral current transducers such as LMRC-21x). Tiles will be automatically organized according to location so a single tile for the building summarizes all information for tiles beneath it on every floor, in every area, in every room. Tiles use three color coded energy target parameters, allowing an owner to quickly identify rooms that are not performing efficiently. Tiles for rooms with occupancy sensors shall include an icon to indicate whether that room is occupied. Tiles shall be clickable, and when clicked the underlying hierarchical level of tiles shall
become visible. Tile interface shall be accessible via mouse, or touch screen devices. Tiles shall be created automatically by the segment manager, based on the information found during the device discovery and/or information included in a file imported in from LMCS (such as tagged descriptions for each room) without any custom programming.

2. Ability to set up schedules for DLM local networks (rooms) and panels. Schedules shall be capable of controlling individual rooms with either on/off or normal hours/after hours set controlled zones or areas to either a normal hours or after hours mode of operation. Support for annual schedules, holiday schedules and unique date-bound schedules, as well as astro On or astro Off events with offsets. Schedules shall be viable graphically as time bars in a screen set up to automatically show scheduled events by day, week or month.

3. Ability to provide a simple time vs. power graph based on information stored in each Segment Manager’s memory (typically two to three days’ data).

6. If shown on the Drawings, Segment Managers shall be integrated into a larger control network by the addition of a Network Supervisor package. The Supervisor is a server level computer running a version of the Segment Manager interface software with dedicated communication and networking
capability, able to pull information automatically from each individual Segment Manager in the network. By using a Supervisor, information for individual Segment Managers can be accessed and stored on the Supervisor’s hard drive, eliminating the risk of data being overwritten after a few days because of Segment Manager memory limits.

7. Segment Manager shall allow access and control of the overall system database via Native Niagara AX FOX connectivity. Systems that must utilize a Tridium Niagara controller in addition to the programming, scheduling and configuration server are not acceptable.

4. Segment Manager shall support multiple DLM rooms as follows:
 1. Support up to 120 network bridges and 900 digital in-room devices (LMSM-3E).
 2. Support up to 300 network bridges and 2,200 digital in room devices, connected via network routers and switches (LMSM-6E).

- PROGRAMMING, CONFIGURATION AND DOCUMENTATION SOFTWARE
 1. PC-native application for optional programming of detailed technician-level parameter information for all DLM products, including all parameters not accessible via BACnet and the handled IR configuration tool. Software must be capable of accessing room-level parameter information locally within the room when connected via the optional LMCI-100 USB programming adapter, or globally for many segment networks simultaneously utilizing standard BACnet/IP communication.
2. Additional parameters exposed through this method include but are not limited to:

1. Occupancy sensor detection LED disable for performance and other aesthetic spaces where blinking LEDs present a distraction.
2. Six occupancy sensor action behaviors for each controlled load, separately configurable for normal hours and after hours modes. Modes include: No Action, Follow Off Only, Follow On Only, Follow On and Off, Follow On Only with Override Time Delay, Follow Off Only with Blink Warn Grace Time, Follow On and Off with Blink Warn Grace Time.
3. Separate fade time adjustments per load for both normal and after hours from 0 – 4 hours.
4. Configurable occupancy sensor re-trigger grace period from 0 – 4 minutes separate for both normal hours and after hours.
5. Separate normal hours and after hours per-load button mode with modes including: Do nothing, on only, off only, on and off.
6. Load control polarity reversal so that on events turn loads off and vice versa.
7. Per-load DR (demand response) shed level in units of percent.
8. Load output pulse mode in increments of 1 second.
9. Fade trip point for each load for normal hours and after hours that establishes the dimmer command level at which a switched load closes its relay to allow for staggered On of switched loads in response to a dimmer.

3. Generation of reports at the whole file, partial file, or room level. Reports include but are not
limited to:

1. Device list report: All devices in a project listed by type.
2. Load binding report: All load controller bindings showing interaction with sensors, switches, and daylighting.
3. BACnet points report: Per room Device ID report of the valid BACnet points for a given site’s BOM.
4. Room summary report: Device manifest for each room, aggregated by common BOM, showing basic sequence of operations.
5. Device parameter report: Per-room lists of all configured parameters accessible via hand held IR programmer for use with O&M documentation.
6. Scene report: All project scene pattern values not left at defaults (i.e. 1 = all loads 100 percent, 2 = all loads 75 percent, 3 = all loads 50 percent, 4 = all loads 25 percent, 5-16 = same as scene 1).
7. Occupancy sensor report: Basic settings including time delay and sensitivities for all occupancy sensors.

4. Network-wide programming of parameter data in a spreadsheet-like programming environment including but not limited to the following operations:
 1. Set, copy/paste an entire project site of sensor time delays.
 2. Set, copy/paste an entire project site of sensor sensitivity settings.
 3. Search based on room name and text labels.
 4. Filter by product type (i.e. LMRC-212) to allow parameter set by product.
 5. Filter by parameter value to search for product with specific configurations.
5. Network-wide firmware upgrading remotely via the
BACnet/IP network.

2. Mass firmware update of specifically selected rooms or areas.
3. Mass firmware upgrade of specific products

6. WattStopper Product Number: LMCS-100, LMCI-100

- EMERGENCY LIGHTING CONTROL DEVICES

1. Emergency Lighting Control Unit – A UL 924 listed device that monitors a switched circuit providing normal lighting to an area. The unit provides normal ON/OFF control of emergency lighting along with the normal lighting. Upon normal power failure the emergency lighting circuit will close, forcing the emergency lighting ON until normal power is restored. Features include:
 1. 120/277 volts, 50/60 Hz, 20 amp ballast rating
 2. Push to test button
 3. Auxiliary contact for remote test or fire alarm system interface

- 3 EXECUTION

 - PREPARATION
 1. Do not begin installation until measurements have been verified and work areas have been properly prepared.
 2. If preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.
 3. Verify that required pre-installation meeting specified in Part 1 of this specification has been completed, recorded meeting minutes have been distributed and all outstanding issues noted have been resolved prior to the start of installation.

 - INSTALLATION
1. Install system in accordance with the approved system shop drawings and manufacturer’s instructions.

2. Install all room/area devices using manufacturer’s factory-tested Cat 5e cable with pre-terminated RJ-45 connectors.
 1. If pre-terminated cable is not used for room/area wiring, each field-terminated cable shall be tested following installation and testing results submitted to the Manufacturer’s Representative for approval prior to proceeding with the Work.

2. Install all room to room network devices using manufacturer-supplied LM-MSTP network wire. Network wire substitution is not permitted and may result in loss of product warranty.

3. Low voltage wiring topology must comply with manufacturer’s specifications.

4. Route network wiring as indicated on the Drawings as closely as possible. Document final wiring location, routing and topology on as built drawings.

3. All line voltage connections shall be tagged to indicate circuit and switched legs.

4. Test all devices to ensure proper communication.

5. Calibrate all sensor time delays and sensitivity to guarantee proper detection of occupants and energy savings. Adjust time delay so that controlled area remains lighted while occupied.

6. Provide written or computer-generated
documentation on the configuration of the system including room by room description including:

1. Sensor parameters, time delays, sensitivities, and daylighting setpoints.
2. Sequence of operation, (e.g. manual ON, Auto OFF. etc.)
3. Load Parameters (e.g. blink warning, etc.)
4. Sequence of operation, (e.g. manual ON, Auto OFF. etc.)
5. Load Parameters (e.g. blink warning, etc.)
6. Sequence of operation, (e.g. manual ON, Auto OFF. etc.)
7. Post start-up tuning – Adjust sensor time delays and sensitivities to meet the Owner’s requirements 30 days from beneficial occupancy. Provide a detailed report to the Architect / Owner of post start-up activity.
8. Tighten all panel Class I conductors from both circuit breaker and to loads to torque ratings as marked on enclosure UL label.
9. All Class II cabling shall enter enclosures from within low-voltage wiring areas and shall remain within those areas. No Class I conductors shall enter a low-voltage area.
10. Run separate neutrals for any phase dimmed branch load circuit. Different types of dimming loads shall have separate neutral.
11. Verify all non-panel-based lighting loads to be free from short circuits prior to connection to room controllers.

FIELD QUALITY CONTROL

1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Notify Architect and Manufacturer in writing a minimum of 3 weeks prior to system start-up and testing.
2. Tests and Inspections: Manufacturer’s service representative shall perform the following inspections and prepare reports.

1. Verify Class I and II wiring connections are terminated properly by validating system performance.
2. Set IP addresses and other network settings of system front end hardware per facilities IT instructions.
3. Verify / complete task programming for all switches, dimmers, time clocks, and sensors.
4. Verify that the control of each space complies with the Sequence of Operation.
5. Correct any system issues and retest.

3. Provide a report in table format with drawings, or using a software file that can be opened in the manufacturer’s system software including each room or space that has lighting control installed. Indicate the following:

1. Date of test or inspection.
2. Loads per space, or Fixture Address identification.
3. Quantity and Type of each device installed
4. Reports providing each device’s settings.

- COMMISSIONING ASSISTANCE

1. Title 24 Acceptance Testing Service; Include additional costs for Lighting Control Manufacturer to provide a technician for one additional day while the CLCATT performs lighting control acceptance testing in accordance with CAL TITLE 24 P6 including submission of required documentation.
• DEMONSTRATION AND TRAINING
 1. Before Substantial Completion, arrange and provide a one-day Owner instruction period to designated Owner personnel. Set-up, starting of the lighting control system and Owner instruction includes:
 1. Confirmation of entire system operation and communication to each device.
 2. Confirmation of operation of individual relays, switches, and sensors.
 3. Confirmation of system Programming, photocell settings, override settings, etc.
 4. Provide training to cover installation, programming, operation, and troubleshooting of the lighting control system.

• PRODUCT SUPPORT AND SERVICE
 1. Factory telephone support shall be available at no cost to the Owner following acceptance. Factory assistance shall consist of assistance in solving application issues pertaining to the control equipment.

END OF SECTION